

Virtual Learning

Physics Rotation Angle & Angular Velocity May 4, 2020

Physics

Rotation Angle & Angular Velocity: May 4,2020

Objective/Learning Target:

Students will examine the concepts of Rotation Angle and Angular Velocity and use them to solve some basic problems.

Quick Review

A certain spring stretches 1 cm for each kilogram it supports.

- 1. If the elastic limit is not reached, how far will it stretch when it supports a load of 8 kg?
- 2. Suppose the spring is placed next to an identical spring so the two side by side springs equally share the 8 kg load. How far will each spring stretch?

Quick Review 1 Answer

1. Common sense says 8 cm of stretch, but let's work it out. We know: F = kx $k = N/m \rightarrow 1 \text{ kg/1cm given} = 980 \text{N/m}$ 1 kg = 9.8 N so... 8 kg = 78.4 N

F = kx78.4N = 980N/m x (x)

<u>78.4N</u> = x = 0.08 m or 8cm 980N/m

Quick Review 2 Answer

Again Common sense says two identical springs then each shares half the load and will stretch half as far for a 4 cm stretch. Let's see.

- We know: F = kx k = 980N/m for each spring
- 1 kg = 9.8N so… 8 kg = 78.4 N
- Also $k_{tot} = k1 + k2$ so... $k_{tot} = 980N/m + 980N/m$ = 1960N/m
- $F = k_{tot}(x)$ 78.4N = 1960N/m (x)
- $\frac{78.4N}{1960N/m} = x = 0.04 \text{ m} \text{ or } 4 \text{ cm}$

Angular Velocity

Link: Rotation Angle & Angular Velocity

Directions:

- Read through Rotation Angle and Angular Velocity.
- Work through any examples on a separate piece of paper before you scroll down to the solution.
- On a separate piece of paper complete the practice problems on the following slides.
- Check your answers.
- For additional practice check out the conceptual questions and the problems and exercises in the table of contents for the online text linked above.

Practice Problem #1 a Mini Lab

- Inspiring Greatness
- Roll a cylindrical can across a table.
 Note the path the rolling can takes.
- 2. Now roll an ordinary tapered drinking cup on the table. Does the cup roll straight across the table or does it curve?
- 3. Does the wide end of the cup cover more distance as it rotates?
- 4. Is the linear speed of the wider end of the tapered cup greater than the linear speed of the narrow end?

Practice Problem #1 a Mini Lab

- 1. The can rolls is a straight line.
- 2. The tapered cup rolls in a curved path
- 3. The wide end covers more distance.
- The wide end of the cup covers more distance as it rotates so its linear speed is greater. Linear speed depends on radius.

Practice Problem #2

The diameter of the base of a tapered drinking cup is 6 cm. The diameter at the mouth is 9 cm. The path of the cup curves when you roll it on the top of a table as you saw in Problem 1.

- 1. Which end, the base or the mouth, rolls faster?
- 2. How much faster?

Practice Problem #2 Solution

They both have the same angular velocity but the mouth travels a farther distance in the same time so it has a greater linear velocity. In 1 rev the bottom travels $2\pi^*3$ cm, the mouth travels $2\pi^*4.5$ cm.

$\omega = v$	V <u>base</u>	also	ω :	= <u>V</u> moi	<u>uth</u>			
r base		rmouth						
SO	<u>V</u> b r b	= <u>vm</u> rm	=	<u>V</u> _b =	= <u>v</u> m 9			
So th	e ratio	of radii	equa	als the	eratio	of sp	eeds	
or	<u>9</u> = 6	<u>V</u> m V⊳		4.5/	3 or <i>′</i>	1.5 tiı	nes f	faster

Practice Problem #3

What is the angular velocity of a 700mm diameter bicycle tire coasting down a hill at 13.0 m/s?

Practice Problem #3 Answer

- = <u>13m/s</u> 0.350m
- = 37.1 rad/s

Additional Practice

For additional practice check out the conceptual questions and the problems and exercises in the table of contents from the online text linked above.